MECH.5250 Grid-Connected Solar Electric Systems (3cr)
Students will study the concepts and design considerations of grid-connected, solar-powered, electrical generation systems, from residential through utility scale. Emphasis will be on practical applications that help make the student "work ready" at graduation. Grading consists of two tests during semester; one individual project (residential scale PV system); and one group project (commercial-scale system). This course fulfills an elective requirement for renewable energy students.
MECH.5260 Transport Processes in Energy Systems (3cr)
Course focuses on the development of a fundamental understanding of transport processes from a multi-scale and multi-physics perspective, and the application of such understanding to the analysis of energy engineering systems. Derivations of the equations describing the mechanisms for mass, momentum, and energy transport are presented, together with approaches for the evaluation of material properties and constitutive relations. Emphasis is placed on a holistic view of transport processes as combinations of transient, advective, diffusive, and reactive phenomena.
MECH.5320 Off-Grid Solar Electric System (3cr)
This course examines the technical, financial and societal aspects of photovoltaic (PV) systems that are not connected to the electrical grid. Topics include: reasons for going off the grid, the components of an off-grid PV system, how to size a PV system to meet the required load, site impacts on performance, determining the loss of load probability (LOLP) for a system, hybrid systems, e.g. solar plus a generator, energy storage solutions, regulatory issues, and cost. Systems sized to meet the annual load requirements of a remote communication system, a net-zero home, and a small village will be examined. HOMERMicrogrid, PVWatts, and other software will be used to design these systems.
Requirements:
MECH.5250 Grid-Connected Solar Electric System.
MECH.5330 Nanomaterials for Energy (3cr)
Introduction of fundamental materials development and principles in addressing issues associated with affordable and sustainable energy. The course starts with basic concepts in materials science and engineering, with special attention paid to the origin of size effects in controlling the properties of nanomaterials. Then a range of materials issues related to development of renewable energy resources and sustainable energy technologies will be discussed. Topics to be covered include: photovoltaic materials and solar energy conversion; thermoelectric materials; materials for electrical energy storage and generation; materials for hydrogen production; piezoelectric energy harvesting; and materials for other emerging energy processes.
MECH.5350 Fundamentals of Sustainable Energy (3cr)
Introduction to scientific principles associated with sustainable energy technologies. Topics include: thermodynamic laws and engineering fundamentals in energy processes, thermodynamic energy conversion, wind and geothermal energy, photovoltaics, ocean thermal energy conversion, electrochemical energy, biomass, and selected emerging energy technologies.