ENGL.1010 College Writing I (3cr)
A workshop course that thoroughly explores the writing process from pre-writing to revision, with an emphasis on critical thinking, sound essay structure, mechanics, and academic integrity. Students will read, conduct rhetorical analyses, and practice the skills required for participation in academic discourse. Students will write expository essays throughout the semester, producing a minimum of four formal essays.
ENGL.1020 College Writing II (3cr)
A workshop course that thoroughly explores the academic research writing process with an emphasis on entering into academic conversation. Building on the skills acquired in College Writing I, students will learn to write extensively with source material. Key skills addressed include finding,assessing, and integrating primary and secondary sources, and using proper documentation to ensure academic integrity. Students will produce analytical writing throughout the semester, including a minimum of four formal, researched essays.
ETEC.2130 Electric Circuits I (3cr)
Discusses: electrical circuits; voltage, current and resistance; energy, power and charge; Ohm's Law, Kirchhoff's Current Law and Kirchhoff's Voltage Law; simplification and conversion techniques for networks containing sources and/or resistance; Thevenin's and Norton's theorems; fundamentals of magnetism and magnetic circuits; properties of capacitance and inductance and associated transient behavior of circuits.
ETEC.2550 Electronics I and Laboratory (3cr)
This course introduces Electronics from a fundamental perspective and analyses of circuits from a practical point of view. Semiconductor devices and their application are stressed. This course surveys the operating characteristics of pn junction diodes, transistors and operational amplifiers, and analyzes their application in actual circuits. The use of diodes in power switching circuits and the use of transistors in logic circuits and amplifiers will be covered extensively. Examples and homework, based on present-day applications, are designed to provide practice in the use of fundamental concepts and applications. It is expected that following the four-course electronic sequence, students will be able to use the textbook used in this course or other professional level electronic texts for further study of specific electronic topics. The course includes computer applications in solving problems involving models of electronic devices and circuits. Coverage of some topics is based on notes handed out that augments coverage in Sedra and SMith.
MATH.1225 Precalculus Mathematics I (3cr)
This course prepares students for future Calculus coursework. Topics covered include: linear equations, slope of a line, quadratic equations, functions, transformations, inequalities, curve sketching, and systems of equations. Credit is given for only one of the following courses; MATH.1205, MATH.1210, MATH.1225.
MATH.1230 Precalculus Mathematics II (3cr)
A continuation of Math 1200/1225. Covers exponential and logarithmic functions, trigonometric and inverse trigonometric functions, and trigonometric identities.
Requirements:
MATH.1210
MATH.1310 Calculus I (4cr)
Serves as a first course in calculus. Functions, limits, continuity, derivatives, rules for differentiation of algebraic and transcendental function; chain rule, implicit differentiation, related rate problems, linearization, applied optimization, and curve sketching. Introduction to area and integration. Students are expected to have taken pre-calculus and trigonometry in order to be successful in this course.
Requirements:
Current ALEKS math placement 76-100, or MATH.1230 Precalculus II with a grade of 'C-' or higher.
MATH.1320 Calculus II (4cr)
Serves as a continuation of Calculus I. Integration and techniques of integration including the substitution method, integration by parts, trigonometric integrals, trigonometric substitution, integration of rational functions by partial fractions, numerical integration, and improper integrals. Volumes using cross-sections, the disk method, the washer method and the shell method. Arc length and surface area. Infinite series, power series, Maclaurin and Taylor series. Polar coordinates and areas and lengths in polar coordinates.
Requirements:
Pre-Req: MATH 1290 Calculus IB, MATH 1310 Calculus I, or a grade of CR in NONC CALC1.
MTEC.1020 Engineering Design and Graphics (3cr)
This course presents material in both class and laboratory format. Topics covered include: dimensioning, print reading, auxiliary views, graphs, screw threads, gears, and the design process. Working in teams, a major design project with written and oral reports is required.
MTEC.2020 Thermo/Fluids Laboratory (2cr)
The course covers the theory and the practical relevance of selected principles of thermo-fluids and fluid mechanics. Fundamentals of measurement and interpretation in the areas of thermo-fluids and fluid mechanics will be studied. The student will be responsible to collect data with the supplied test apparatus, interpret the physical significance of the data, in relation to the laws and principles of thermo/fluids, and to report findings. Strong emphasis is placed upon developing technical report writing skills.
Notes:
3 Contact Hrs
Requirements:
MTEC.2410, MTEC.2420, MTEC.2260 or ENGL.2260
MTEC.2030 Introduction to Automated Control Programming (3cr)
This course is designed to introduce machine tool programming languages and their use in modern manufacturing. Emphasis will be placed upon students developing a formal understanding of the programming variables and constraints of Computer-Numerically Controlled manufacturing systems. Students will learn both introductory and advanced programming methods. Students will learn manual programming techniques developed from engineering drawings. Students will also learn manual programming techniques developed from engineering drawings. Students will also learn to use computer-based CAM software systems as well as computer based programming verification software. Mastercam, Esprit CAM, Autodesk CAM will be introduced in the course as exemplars of CAM software platforms. Vericut will be introduced as an exemplar of verification software.
MTEC.2040 Manufacturing Technology Laboratory (2cr)
Students will develop an understanding of precision metrology and the machine tools, related equipment, and systems used in manufacturing. Students will learn the inter-relationships between machine tools, various machining methods, engineering design considerations, and manufacturing techniques studied in the MET program. Lecture, case studies, and laboratory work are supported by a comprehensive text with supplemental materials provided by the instructor to enhance student learning. Students will work with lathes, drill presses, vertical milling machines, and abrasive finishing methods during laboratory sessions to manufacture several precision finished parts from engineering drawings. Course grades will be determined from student performance on examinations and laboratory projects.
Requirements:
MTEC.1010 Engineering Graphics
MTEC.2210 Statics (3cr)
Statics is the study of objects in equilibrium and the forces acting on that object. Students will develop mathematical models to predict and analyze forces and their distributions with the use of the free body diagram. The concepts presented in this course directly relate to other mechanical and civil engineering fields. Students must have a basic understanding of trigonometry, geometry, physics and calculus. This course is in a combined section with CET.
Requirements:
MTEC.1250, PHYS.1310
MTEC.2220 Dynamics (3cr)
This course introduces the student to the kinematics and kinetics of particles, systems of particles, and rigid bodies. This course covers the basic methods of analysis including Newton's 2nd Law (force, mass, acceleration), Work and Energy, and Impulse and Momentum. This course is in a combined section with CET.
Requirements:
MATH.1260, MTEC.2210, PHYS.1320
MTEC.2230 Mechanics of Materials (3cr)
This course discusses the principles of strength of materials and the relationships between externally applied forces and internally induced stresses in various types of structural and machine members and components. Included are axial, torsional, and flexural loadings, stress-strain relationships, deformation of materials, elastic deformation, principal stresses, temperature effects, MohrÆs circle, shear and bending moment diagrams, the design of beams, and the deflection of beams.
Requirements:
MTEC.2210
MTEC.2410 Elements of Thermodynamics I (3cr)
This course presents a thorough treatment of the concepts and laws of thermodynamics. The first law (energy) and the second law (entropy), properties of liquids and gases, and common power cycles (Rankine and Otto) are covered. Included is an overview of the global energy problem and power generation technologies, both established and novel
Requirements:
MATH.1260, PHYS.1320
MTEC.2420 Applied Fluid Mechanics (3cr)
This course addresses the Properties of Fluids and basic concepts of Continuity, Momentum, Hydrostatics, and Fluid Flow Kinematics. Analysis of flow of real fluids in pipes, ducts and open channels is conducted. The study of compressible flows, fluid couplings as well as flow measurement techniques will also be discussed
Requirements:
MTEC.2220
MTEC.2850 Introduction to SolidWorks (3cr)
This course introduces the student to the use of CAD for construction of basic shapes and multiview drawings. It is a project oriented course introducing the student to graphic design using SolidWorks. SolidWorks is a three dimensional solid modeling program used to produce computer design models.
MTEC.2950 Materials Science (3cr)
Properties of materials, selection of materials and processing of materials for appropriate applications are the focus of this course. Case studies are utilized to demonstrate failures which need not have occurred. Materials which are considered include metals and alloys, ceramics, polymers, and composites.
PHYS.1410 Physics I (3cr)
First semester of a two-semester sequence for science and engineering majors. Mehcanics including vectors, kinematics in one and two dimensions, Newton's laws of dynamics, work and energy, energy conservation, linear momentum conservation, rotational kinematics and dynamics, Newton's Universal Law of Gravitation, oscillatory motion and mechanical waves.
Notes:
Offered in summer only; SCL
Requirements:
PHYS.1410L co-requisite
PHYS.1410L Physics I Lab (1cr)
Serves as an introductory course on methods and techniques of experimentation in physics with experiments in mechanics selected to support the concepts of the corequisite lecture course.
Notes:
Offered in summer only; SCL
Requirements:
PHYS.1410L co-requisite
PHYS.2450 Physical Properties of Matter (3cr)
Fluid statics, dynamics of fluids, properties of solids, advanced topics in waves and vibrations, temperature and heat flow, kinetic theory of gases, thermodynamics, and the limits of classical physics.
PHYS.2450L Physics III Lab (1cr)
Experiments are selected principally in properties of solids, vibrations, waves, heat, and thermodynamics.