BMBT.5000 Introduction to Biomedical Engineering & Biotechnology (3cr)
Team-taught introductory course that emphasizes a multidisciplinary approach to current topics in the range of academic disciplines and gives students their first exposure to faculty research areas. The course, as mucha as possible, will involve faculty from within Biomedical Engineering and Biotechnology. The course, as much as possible, involves faculty from all participating campuses. Speakers from industry are also invited to present topics of contemporary importance.
PLAS.5030 Mechanical Behavior of Polymers (3cr)
Topics covered in this course include linear viscoelasticity, creep, stress relaxation, dynamic behavior, hysteresis, stress-strain response phenomena, principles of time-temperature superposition, rubber elasticity, failure and fracture mechanisms for polymers, and the effect of additives on mechanical behavior. Real life design examples are used to demonstrate the topics and concepts as much as possible.
Requirements:
Pre-Reqs: MECH.2110 Engin. Mechanics, MECH.2150 Plastics Process Engin. Lab I, MATH.2340 Diff Eq.s or MATH.2360 Engin. Diff Eq. or Grad. career students. (Pre-reqs are enforced only for undergrad plastics engineering students).
PLAS.5180 Plastics Product Design (3cr)
This course reviews the theoretical principles and the engineering practice associated with the development of new plastic products. The course focuses on design practices for products that will be produced by conventional and advanced injection molding processes. Topics include design methodology, plastic materials selection, design for manufacturing, computer aided engineering, mechanical behavior of plastics, structural design of plastic parts, prototyping techniques, experimental stress analysis, and assembly techniques for plastic parts.
Requirements:
26.211 Engineering Mechanics, 26.218 Introduction to Design or Graduate career students. (Pre-requisites are enforced only for undergraduate plastics engineering students).
PLAS.5530 Medical Device Design I (3cr)
A systematic approach to inventing new medical devices. The class details the process of validating medical needs including market assessment and the evaluation of existing technologies; basics of regulatory (FDA) and reimbursement planning; brainstorming and early prototyping for concept creation. Course format includes expert guest lecturers and interactive practical discussions with faculty. Students will prepare a medical device proposal and presentation.
PLAS.5550 Medical Device Processing (3cr)
Critical analysis of current methods of medical device manufacturing, focusing on processing and performance considerations. Includes discussion of different production methods, material selection considerations, biocompatibility, leachables and extractables, device sterilization, and sterile packaging.
PLAS.5750 Biomaterials in Medical Applications (3cr)
A comprehensive study of the history, current and future rents within biomedical devices and their applications. Students will be introduced to research techniques used to analyze the different classes of biomaterials. An overview of typical host reactions such as inflammatory response and their evaluation will be touched upon.