PLAS.5030 Mechanical Behavior of Polymers (3cr)
Topics covered in this course include linear viscoelasticity, creep, stress relaxation, dynamic behavior, hysteresis, stress-strain response phenomena, principles of time-temperature superposition, rubber elasticity, failure and fracture mechanisms for polymers, and the effect of additives on mechanical behavior. Real life design examples are used to demonstrate the topics and concepts as much as possible.
Requirements:
Pre-Reqs: MECH.2110 Engin. Mechanics, MECH.2150 Plastics Process Engin. Lab I, MATH.2340 Diff Eq.s or MATH.2360 Engin. Diff Eq. or Grad. career students. (Pre-reqs are enforced only for undergrad plastics engineering students).
PLAS.5060 Polymer Structure Properties & Applications (3cr)
Relationships between polymer structure (chemical composition, molecular weight and flexibility, intermolecular order and bonding, supermolecular structure) and practical properties (processability, mechanical, acoustic, thermal, electrical, optical, and chemical) and applications.
Requirements:
26.202 pre-re or Grad Career.
PLAS.5110 Polymer Blends (3cr)
Physical, mechanical, and thermal properties, preparation, and testing of polymer blends, alloys, and multiphase systems. Thermodynamic theories and experimental determination of miscibility of polymer blends. Structure property relationships for multiphase systems and interpenetrating networks.
PLAS.5120 Foams (3cr)
This course covers the fundamentals of polymer foaming, processing methods, recent technologies, foam characteristics, and applications. Fundamentals cover the cell nucleation and growth mechanisms in foaming and the role of thermodynamics and kinetics. Batch foaming, extrusion foaming, foam injection molding, and bead foaming are discussed as the common processing methods. The characteristics and performance of polymeric foams, process-structure-property relationships, and the relevant applications in various industries also are presented.
PLAS.5180 Plastics Product Design (3cr)
This course reviews the theoretical principles and the engineering practice associated with the development of new plastic products. The course focuses on design practices for products that will be produced by conventional and advanced injection molding processes. Topics include design methodology, plastic materials selection, design for manufacturing, computer aided engineering, mechanical behavior of plastics, structural design of plastic parts, prototyping techniques, experimental stress analysis, and assembly techniques for plastic parts.
Requirements:
26.211 Engineering Mechanics, 26.218 Introduction to Design or Graduate career students. (Pre-requisites are enforced only for undergraduate plastics engineering students).
PLAS.5320 Adhesives and Adhesion (3cr)
Adhesive joining of engineering materials. Surface chemistry, theories of adhesion and cohesion, joint design, surface preparation, commercial adhesives, Rheology, equipment, testing, service life, and reliability.
PLAS.5330 Green Coatings Science and Technology I (3cr)
This course reviews the basic principles of design and formulation of water-borne, high-solids and powder resins used for the development of solvent-less "green" coatings and the use of bio-derived resins, mostly based on soybean oil and other renewable raw materials. The mechanisms and methods of curing and of polymerization for polymers used as coatings will also be covered. The basic principles of formulation of coatings will be introduced. Permission of instructor for Plastics Engineering Undergraduates seeking to take course as technical elective.
PLAS.5350 Rubber Technology (3cr)
Polymerization and compounding of the commercial elastomers. Properties and test methods.Leading applications and methods of processing.
PLAS.5370 Business Law for Engineers (3cr)
Business legal issues engineers encounter in practice, including contractual, products liability, and intellectual property issues. Business torts relating to product design, manufacturing and inadequate warning defects. Unreasonably dangerous products and strict liability.
PLAS.5440 Advanced Plastics Materials (3cr)
This course reviews the historical developments of polymeric material systems, commodity, engineering, biodegradable, and high performance thermoplastics. Topics include their synthesis, structure, properties, and applications and there is also an overview of typical additives that are used to modify the properties of plastics. Knowledge of general and/or organic chemistry is recommended as a prerequisite for this course. .
Requirements:
CSCE Graduate Restrictions
PLAS.5500 Processing with Elastomers (3cr)
This course covers the basics of elastomer processing. Topics include mixing, Rheology, extrusion, injection molding, compressing molding, and curing as it applies to elastomers.
PLAS.5530 Medical Device Design I (3cr)
A systematic approach to inventing new medical devices. The class details the process of validating medical needs including market assessment and the evaluation of existing technologies; basics of regulatory (FDA) and reimbursement planning; brainstorming and early prototyping for concept creation. Course format includes expert guest lecturers and interactive practical discussions with faculty. Students will prepare a medical device proposal and presentation.
PLAS.5550 Medical Device Processing (3cr)
Critical analysis of current methods of medical device manufacturing, focusing on processing and performance considerations. Includes discussion of different production methods, material selection considerations, biocompatibility, leachables and extractables, device sterilization, and sterile packaging.
PLAS.5731L Graduate Polymer Laboratory I (1cr)
This course provides graduate students hands-on experience with plastics processing and characterization techniques. Students formed parts of products using multiple extrusion processes, injection molding, blow molding, and thermoforming. These products then are characterized for their mechanical, thermal, and other characteristics using standard test methods. This is the first in a series of two courses that, combined, cover the same content as PLAS.5730 Graduate Polymer Laboratory. In this course, students fulfill the hands-on experience portion on an accelerated manner.
Requirements:
Anti-req: PLAS.5730.
PLAS.5732 Graduate Polymer Laboratory II (2cr)
This course provides graduate students experience with reporting results from laboratory processing and characterization in a professional manner. This is the second in a series of two course that, combined, cover the same content as PLAS.5730 graduate Polymer Laboratory. In this course, students take the data collected in the first part of this series and create written reports of the results.
Requirements:
PLAS.5731L Graduate Polymer Laboratory I, and Co-req: PLAS.0010 Safety Lecture, and Anit-req: PLAS.5730 Graduate Polymer Lab.
PLAS.5750 Biomaterials in Medical Applications (3cr)
A comprehensive study of the history, current and future rents within biomedical devices and their applications. Students will be introduced to research techniques used to analyze the different classes of biomaterials. An overview of typical host reactions such as inflammatory response and their evaluation will be touched upon.
PLAS.5760 Advanced Mold Design (3cr)
This course provides an integrated approach to mold engineering which includes the interrelationships of polymeric materials, engineering principles, processing, and plastics product design. Major topics include cost estimation, mold layout and feed system design, cooling systems, structural design considerations, and ejector system design. Analytical treatment of the subject matter is given based on the relevant rheology, thermodynamics, heat transfer, fluid flow and strength of materials.
Requirements:
CSCE Graduate Restrictions
PLAS.5780 Advanced Plastics Processing (3cr)
This course reviews the common plastics manufacturing processes, including extrusion, injection molding, blow molding, thermoforming, and rotational molding. After the review, the course focus shifts to the impacts of screw design and processing parameters on the conveyance, melting, devolatilization, and mixing with single screws and compounding with twin screw extruders. This course also includes an overview of die designs, multi-shot and gas assist injection molding, film stretching and methods for heating and cooling in plastics processing.
PLAS.5950 Thermoplastic Elastomers (3cr)
A comprehensive review of thermoplastic elastomer (TPE) technology. Physical and chemical nature of the various classes of TPE's will be considered with emphasis on mechanical and rheological properties relevant to engineering applications.
PLAS.5970 Plastics & Environment (3cr)
This course investigates the waste management solutions for different types of plastics. Both traditional and emerging recycling methods will be highlighted. Accumulation of plastic waste in the natural environment and the toxicology of plastics as well as their additives will be discussed, Further, analysis methods and instrumentation to characterize recycled plastics, and the differences in virgin polymers and recycled polymers will be introduced. Potential degradable, biodegradable or biobased alternatives will be reviewed along with the concepts of life cycle assessment and Green Chemistry for designing the most sustainable plastic materials.
PLAS.5990 Rapid Prototyping (3cr)
Survey of the rapidly expanding technology field of rapid prototyping. Technologies to be considered include stereolithography, laminated object manufacturing, selective laser sintering, fused deposition modeling, and solid ground curing.
PLAS.6060 Plastics Manufacturing Systems Engineering (3cr)
The course provides guidance about plastics manufacturing as an integrated system with broadly applicable analysis in three areas: 1) machinery, 2) controls, and 3) operations. The machinery topics include heating/cooling, hydraulics/pneumatics, electric drives, and sensors. The controls topics include signal conditioning, data acquisition, machine controllers, and related control laws. The operations topics include process characterization, process optimization, quality control, and automation. The course is developed to support plastics processing engineers and others involved with plastics manufacturing who are performing process development, research, and machine design.
PLAS.6110 Coloration of Engineering Thermoplastics (3cr)
A comprehensive approach to all elements of Color Technology focused on needs for future plastics engineers. The course includes theory of color vision, instrumental color measurement and tolerancing, chemistry and processes of commercial dyes and pigments, their testing in polymers, failure modes and elements of industrial color matching. Special attention will be given to weatherability of color formulations.
PLAS.6780 New Developments in Polymer Manufacturing (3cr)
This course explores advanced concepts and new developments in polymer manufacturing. It is designed for students with prior courses and/or experience in polymer processing.