PLAS.5030 Mechanical Behavior of Polymers (3cr)
Topics covered in this course include linear viscoelasticity, creep, stress relaxation, dynamic behavior, hysteresis, stress-strain response phenomena, principles of time-temperature superposition, rubber elasticity, failure and fracture mechanisms for polymers, and the effect of additives on mechanical behavior. Real life design examples are used to demonstrate the topics and concepts as much as possible.
Requirements:
Pre-Reqs: MECH.2110 Engin. Mechanics, MECH.2150 Plastics Process Engin. Lab I, MATH.2340 Diff Eq.s or MATH.2360 Engin. Diff Eq. or Grad. career students. (Pre-reqs are enforced only for undergrad plastics engineering students).
PLAS.5060 Polymer Structure Properties & Applications (3cr)
Relationships between polymer structure (chemical composition, molecular weight and flexibility, intermolecular order and bonding, supermolecular structure) and practical properties (processability, mechanical, acoustic, thermal, electrical, optical, and chemical) and applications.
Requirements:
26.202 pre-re or Grad Career.
PLAS.5180 Plastics Product Design (3cr)
This course reviews the theoretical principles and the engineering practice associated with the development of new plastic products. The course focuses on design practices for products that will be produced by conventional and advanced injection molding processes. Topics include design methodology, plastic materials selection, design for manufacturing, computer aided engineering, mechanical behavior of plastics, structural design of plastic parts, prototyping techniques, experimental stress analysis, and assembly techniques for plastic parts.
Requirements:
26.211 Engineering Mechanics, 26.218 Introduction to Design or Graduate career students. (Pre-requisites are enforced only for undergraduate plastics engineering students).
PLAS.5530 Medical Device Design I (3cr)
A systematic approach to inventing new medical devices. The class details the process of validating medical needs including market assessment and the evaluation of existing technologies; basics of regulatory (FDA) and reimbursement planning; brainstorming and early prototyping for concept creation. Course format includes expert guest lecturers and interactive practical discussions with faculty. Students will prepare a medical device proposal and presentation.
PLAS.5550 Medical Device Processing (3cr)
Critical analysis of current methods of medical device manufacturing, focusing on processing and performance considerations. Includes discussion of different production methods, material selection considerations, biocompatibility, leachables and extractables, device sterilization, and sterile packaging.
PLAS.5760 Advanced Mold Design (3cr)
This course provides an integrated approach to mold engineering which includes the interrelationships of polymeric materials, engineering principles, processing, and plastics product design. Major topics include cost estimation, mold layout and feed system design, cooling systems, structural design considerations, and ejector system design. Analytical treatment of the subject matter is given based on the relevant rheology, thermodynamics, heat transfer, fluid flow and strength of materials.
Requirements:
CSCE Graduate Restrictions
PLAS.5990 Rapid Prototyping (3cr)
Survey of the rapidly expanding technology field of rapid prototyping. Technologies to be considered include stereolithography, laminated object manufacturing, selective laser sintering, fused deposition modeling, and solid ground curing.